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In words of Sergei Prokofiev we define neo-classicism: “I thought that if
Haydn were alive today he would compose just as he did before, but at the
same time would include something new in his manner of composition. It
seemed to me that had Haydn had lived to our day he would have retained
his own style while accepting something of the new at the same time. That
was the kind of symphony I wanted to write, a symphony in classical style.”

Classical theory of composites amounts to the celebrated Maxwell for-
mula, also known as Clausius–Mossotti approximation. Actually all modern
self-consistent methods (SCM) perform elaborated variations on the theme
and are justified rigorously only for a dilute composites when interactions
among inclusions are neglected. In the same time, exact and high-order
formulae for special regular composites which go beyond SCM were derived.

The book [2] may be considered as an neo-classical answer to the ques-
tion associated to the picture on the last front matter page. Why does James
Bond prefer shaken, not stirred martini with ice? The complete answer on
the question is yet to be found, and most likely after many experiments.
But the mathematical answer is attempted in the book. Highly accurate
computational analysis of structural media allows us to explain the differ-
ence between various types of random composite structures. It is strongly
related to the critical exponent s in the asymptotic behavior of the effective
conductivity. In the limiting case of a perfectly conducting inclusions, the
effective conductivity is expected to tend to infinity as a power-law, as the
concentration of inclusions f tends to the maximal value fc = π

4
[1]

σe(f) ≈ A

(fc − f)s
. (1)
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The dependence of s on the shaken-stirred regime of inclusions is displayed in
Fig.1. Similarly, one can consider different effective properties. Universality
of the mathematical modeling implies that the same equations hold for the
electric and thermal conductivity, magnetic permeability, anti-plane elastic
strains etc.

Figure 1: Why did James Bond prefer shaken, not stirred martini with ice?
Because he sensed in martini the critical exponent s from formula (1). The
dependence of s on the degree of disorder measured in steps of random walk
is displayed in the graphics.

We are primarily concerned here with the effective properties of deter-
ministic and random composites and porous media. The analysis is based on
accurate analytical solutions to the problems considered by respected spe-
cialists as impossible to find their exact solutions.

Of course, it is impossible to resolve all the problems of micromechanics
and their analogs, but certain classes such as boundary value problems for
Laplace’s equation and bi-harmonic two-dimensional (2D) elasticity equa-
tions can be solved in analytical form. At least for an arbitrary 2D multiply
connected domain with circular inclusions our methods yield analytical for-
mulae for most of the important effective properties, such as conductivity,
permeability, effective shear modulus and effective viscosity. Randomness in
such problems is introduced through random locations of non-overlapping
disks. It is worth noting that any domain can be approximated by special
configurations of packed circular disks.

Despite a considerable progress made in the theory of disordered media,
the main tools for studying such systems remain numerical simulations and
questionable designs to extend SCM to high concentrations.

Discrete numerical solutions such as finite elements and difference meth-
ods. are powerful and their application is reasonable when the geometries
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and the physical parameters are fixed. In this case the researcher can be fully
satisfied with numerical solution to various boundary value problems. Vari-
ous numerical packages sometimes are presented as a universal remedy. But,
a sackful of numbers is not as useful as an accurate analytical formulae. Pure
numerical procedures fail as a rule for the critical parameters and analyti-
cal matching with asymptotic solutions can be useful even for the numerical
computations.

Such philosophy is sustained by unlimited belief in numerics and equal
underestimation of constructive analytical and asymptotic methods. They
have to be drastically reconsidered and refined. In our opinion there are three
major neo-classical developments which warrant such radical change of view.

1. Recent mathematical results devoted to explicit solution to the Riemann–
Hilbert and R−linear problems for multiply connected domains.

2. Significant progress in symbolic computations (see MATHEMATICA
and others) greatly extends our computational capacities. Symbolic compu-
tations operate on the meta-level of numerical computing. They transform
pure analytical constructive formulae into computable objects. Such an ap-
proach results in symbolic algorithms which often require optimization and
detailed analysis from the computational point of view. Moreover, symbolic
and numeric computations do integrate harmoniously.

But even long power series in concentration and contrast parameters
are not sufficient because they won’t allow to cover the high-concentration
regime. Sometimes the series are short, in other cases they do not converge
fast enough, or even diverge in the most interesting regime. Your typical
answer to the challenges is to apply an additional methods powerful enough
to extract information from the series. But in addition to a traditional Padé
approximants applied in such cases, we would need a

3. New post-Padé approximants for analysis of the divergent or poorly
convergent series, including different asymptotic regimes discussed in Chap-
ter 5.

In the book, we demonstrate that the theoretical results can be effectively
implemented in symbolic form that yields long power series. Accurate ana-
lytical formulae for deterministic and random composites and porous media
can be derived employing approximants, when the low-concentration series
are supplemented with information on the high-concentration regime where
the problems we encounter are characterized by power laws.

As to the engineering needs we recognize the need for an additional fourth
step. The engineer would like to have a convenient formula but also to in-
corporate in it all available information on the system, with a particular
attention to the results of numerical simulations or known experimental val-
ues by applying the method of “regression on approximants”, described in

3



to the book.
Central for our study, series method arises when an unknown element x

is expanded into a series x =
∑∞

k=1 ckxk on the basis {xk}∞k=1 with undeter-
mined constants ck. Substitution of the series into equation can lead to an
infinite system of equations on ck. In order to get a numerical solution, this
system is cut short and a finite system of equations arise, say of order n. Let
the solution of the finite system tend to a solution of the infinite system, as
n→∞. Then, the infinite system is called regular and can be solved by the
described truncation method. The obtained truncated series are considered
as polynomials. They are supposed to “remember their infinite expansions”,
so that with a help of some additional re-summation procedure one can ex-
trapolate to the whole series.

The book is organized as follows. First, the general term solution to a
problem is discussed in Introduction since sometimes general methods which
are hard to implement numerically, are called “analytical solutions”. We have
to ensure the Reader that “solved” indeed means “solved”, and we deal with
exact and approximate analytical solutions. Chapter 2 contains a description
of the method of functional equations, the main tool to solve the problems
in terms of expansions. A short introduction into complex analysis includ-
ing the Riemann-Hilbert and R-linear problems for finite multiply connected
domains is presented. Chapter 3 is devoted to extension of the results ob-
tained in Chapter 2 to periodic problems (for infinitely connected domains),
the principal problems of composites. In statement of the problems, we use
Hashin’s MMM principle based on the physical intuition and observations.
Convergence of the standard cluster and contrast expansions traditionally
applied in the theory of composites is demonstrated by treatment of these
expansions as the generalized Schwarz alternating method. In Chapter 4, we
discuss e-sums and their application to the RVE theory. Chapter 5 contains
general description of asymptotic methods of approximation. Chapters 6
and 7 are devoted to computation of the effective conductivity of the square
and hexagonal arrays of cylinders. 3D composites are considered in Chapter
8 where we solve a boundary value problem for a finite number of spheres
in space and discuss periodic problems for regular locations of inclusions.
Analytical formulae for the effective conductivity of random composites are
obtained in Chapter 9. Extension to 2D elastic problems are presented in
Chapter 10. The most valuable analytical formulae derived in the book are
presented in special Table. These formulae are intended for engineers for
estimation of the effective properties of composites.

We continue below with a concrete example of classical and neo-classical
theories concerning 2D conductivity (thermal, electric etc). Consider a classi-
cal problem of the effective conductivity of a 2D regular composite. An accu-
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rate approximate formula formula can be deduced for a 2D, two-component
composite made from a collection of non-overlapping, identical, ideally con-
ducting circular discs, embedded regularly in an otherwise uniform locally
isotropic host. Consider the general situation, when contrast parameter ρ
enters the power series for conductivity explicitly. Usually, the conductivity
of the matrix is normalized to unity, σm = 1. Let σ denote the conductivity
of inclusions, and

ρ =
σ − 1

σ + 1
,

so that |ρ| ≤ 1.
The following expansion in concentration f of the inclusions and contrast

parameter ρ was obtained in[2],

σe ≈ 1+fρ
1−fρ + 0.611654f 5ρ3 + 1.22331f 6ρ4 + 1.83496f 7ρ5 + 2.44662f 8ρ6.

(2)
The coefficients depend only on ρ.

The series (2) are expressed as a correction to the celebrated classical
Maxwell’s, or Clausius-Mossotti (CM) formula,

σe ≈
1 + ρf

1− ρf
.

CM is valid for small concentrations but respects the phase interchange sym-
metry.

Formula (2) respects this symmetry as well. Mind that in 2D one has
to respect celebrated Keller’s phase-interchange relation [3, 5], valid for the
general case of average conductivity of a statistically homogeneous isotropic
random distribution of cylinders of one medium in another medium [3]. Since
the dependence on the conductivity of inclusions and matrix is hidden within
the contrast parameter and depends only on σ, the phase interchange can be
expressed as follows,

1

σe(σ)
= σe

(
1

σ

)
,

One should check their method’s compliance with the symmetry.
The proper steps has to be taken to guarantee corresponding critical prop-

erties. Then, we simply modify the solution to move away to a non-critical
situations. Such modification can be accomplished from scaling considera-
tions in the vicinity of fc. For small σ the form of a correction to generic
power-law may be also found as a power-law, but with different critical ex-
ponent u. In 2D u is always equal to 1/2 [1]. Although in 2D case there is no
exact solution, we are going to look for an approximate analytical solution
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in the model with two critical exponents. There are two limit-cases. For
non-conducting disks, as σ = 0,

σe '

√
fc − f
fc

(3)

and for weakly-conducting disks, with σ 6= 0, as f = fc

σe ≈ σ1/2, (4)

with fc = π
4
≈ 0.7854.

The simplest solution satisfying both limits can be constructed in additive
form

σe ≈
√
σ +

2
√

π
4
− f

√
π

. (5)

In higher orders one can still obtain closed-form expressions and manage
them with MATHEMATICA. They are too long to be brought up here. But
for concrete parameters their derivation and final form are pretty simple.
Assuming the higher-order form P4,4 for the correcting Pade approximant,
we obtain an accurate formula for σ = 1/50

σe ≈
0.817042(f(f(f(f−0.13819)−0.034015)+2.33313)−3.22041)(

√
0.785398−f+0.125331)

f(f(f(f+0.226828)+1.01293)−1.70169)−2.66162 . (6)

For further comparison we also constructed the Pade approximant for
conductivity

σe ≈
(f − 0.871396)(f + 1.75656) (f 2 − 0.88516f + 2.31417)

(f − 1.75656)(f + 0.871396) (f 2 + 0.88516f + 2.31417)
. (7)

In Fig.3 it is clearly seen a linear behavior of conductivity in the interme-
diate region. Thus, there are three characteristic parts described by formula
(6). For small f there is a diluted situation, also covered by classical CM
formula. For intermediate f the conductivity can be approximated by lin-
ear behavior well covered also by the Pade approximant. The critical region
close to fc is described only by our formula. Various approximations are
compared in In Fig.2. Overall, only neo-classical formula (6) can cover all
three situations.

The form (5) is particularly suited to include the critical behavior as
ρ → −1, and could be adapted to the case ρ → 1, respectively. The
phase-interchange symmetry is preserved when analogous calculations are
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Figure 2: Our suggestion (6) is shown with blue, solid line, and the Pade
approximant (7) is shown with green, dashed line. The Clausius-Mossotti
(CM) formula is shown with red, dotted line. Naive power-law extrapolation
of the formula (3) to the whole region is shown with orange, dot-dashed line.
The numerical data are shown with dots.

performed for highly conducting inclusions, σ � 1, with the following “sym-
metric” choice of the approximation for the critical behavior,

σe ≈
1

2
√

π
4
−f

√
π

+ 1√
σ

. (8)

To derive a new formula, valid in the whole range of relevant variables, is
not merely a mathematical exercise. It provides a fresh insight, since in the
majority of cases realistic material sciences problems correspond neither to
weak coupling (or low concentration) regime nor to strong coupling (high con-
centration) limit, but to the intermediate range of parameters. Such regime
can be covered by some rather complex formula deduced from asymptotic
regimes. It is quite handy for a scientist to possess a general mathemat-
ical toolbox to derive asymptotic, typically power laws, as well as explicit
crossover formulas for arbitrary phenomena. We agree with [4] that power
laws are ubiquitous and should be exploited for complete analysis of the sys-
tem, rather than to imbue them with a vague and mistakenly mystical sense
of universality [4].

This note shortly presents the study conducting by the scientific interdis-
ciplinary Materialica+, see www.materialica.plus. We are cordially invite
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Figure 3: σ = 1/50. The Clausius-Mossotti (CM) formula is shown with
green, dashed line. Our suggestion (6) is shown with blue, solid line. Naive
power-law extrapolation of the formula (3) to the whole region is shown with
red, dotted line.

engineers to cooperation.

8



References

1. Efros AL, Shklovskii BI, Critical behaviour of conductivity and di-
electric constant near the metal-non-metal transition threshold, Phys.
Status Solidi B., 1976; 76: 475–485.

2. Gluzman S, Mityushev V, Nawalaniec W, Computational Analysis of
Structured Media. Elsevier: 2017.

3. Keller JB, J. Math. Phys. 5 (1964), 548–549.

4. Stumpf MPH, Porter MA, Critical truths about power laws, Science,
2012, 335, 665–666.

5. Torquato S, Random Heterogeneous Materials: Microstructure and
Macroscopic Properties. New York. Springer-Verlag. 2002.

9


