W przemyśle lotniczym wydajność i ekologia stają się coraz częściej synonimami tej branży. Koszty paliwa stanowią najwyższe ze wszystkich kosztów operacyjnych samolotów pasażerskich. Nie jest zaskoczeniem, że przemysł musi podejmować wysiłki w celu zmniejszenia wagi samolotu, co miałoby bezpośredni wpływ na ekonomię linii lotniczych i środowisko naturalne. W przypadku samolotów pasażerskich liczy się każdy zredukowany kilogram struktury lotniczej. Szacuje się, że redukcja wagi o 100 kg w przeciętnym samolocie pasażerskim pozwala zaoszczędzić rocznie około 19 000 litrów paliwa, a tym samym zmniejszyć emisję C02. W konsekwencji, zastosowanie lekkich i wysokowytrzymałych materiałów stało się kwintesencją zastosowań high-end w przemyśle lotniczym.
W latach 70-tych XX wieku aluminium, stal i tytan dominowały w branży lotniczej, zajmując około 70% przeciętnego samolotu. Liczba kompozytów wynosiła wówczas mniej niż 4%. Dostrzegając zalety, przemysł rozpoczął stosowanie materiałów kompozytowych. W chwili obecnej najbardziej zaawansowane konstrukcje samolotów zawierają duże ilości polimerów i kompozytów wzmacnianych włóknami węglowymi. Kompozyty węglowe stanowiły 50% masy konstrukcyjnej samolotu nowej generacji A350XWB. Natomiast jego konkurent, B787, również zawiera kompozyty na poziomie 50%. Nie tylko te dwa giganty, ale także inne firmy, takie jak Bombardier, BAE Systems, Raytheon, GE Aviation i Lockheed Martin, również skłaniają się ku wykorzystaniu kompozytów w swoich samolotach.
Należy zaznaczyć, że około 35 ton kompozytów węglowych jest używanych w każdym największym Airbusie A380 i średniej wielkości B787. Natomiast w A350XW, wykorzystania kompozytów węglowych jest jeszcze większe i wynosi 65 ton. Włókno węglowe oferuje wiele zalet, takich jak doskonała redukcja wagi, wysoki stosunek wytrzymałości do masy, wysoka wytrzymałość na rozciąganie i ściskanie, niski współczynnik rozszerzalności cieplnej i wysoka odporność zmęczeniowa, ale przy bardzo wysokich kosztach. Włókna szklane, które jednak pozostają w tyle pod względem parametrów mechanicznych, przewyższają włókna węglowe w współczynniku wytrzymałości do ceny, co jest głównym czynnikiem wpływającym na ich zastosowanie ich w tych obszarach, w których wysoka wytrzymałość nie stanowi największego problemu.
Kompozyty termoutwardzalne, przetwarzane w autoklawie, są głównymi materiałami od czasu wprowadzenia kompozytów do przemysłu lotniczego. Od początku XX wieku techniki przetwarzania poza autoklawem (OOA) zaczęły wzbudzać zainteresowanie ze względu na możliwości szybszej produkcji i niższych kosztów produkcji, co jest priorytetowym każdego przemysłu. To przesunięcie paradygmatu w kierunku efektywności procesowo – ekonomicznej spowodowało, że przemysł zainteresował się nowymi materiałami.
Należy pamiętać o różnicach pomiędzy materiałami termoplastycznymi i duroplastycznymi.
Termoplasty: materiał może być przetwarzany wielokrotnie i podczas utwardzania nie powstają wiązania chemiczne nieodwracalne
Duroplasty: proces utwardzania jest nieodwracalny, a powstałe wiązania w trakcie procesu utwardzania są nierozerwalne.
Kompozyty termoplastyczne w przemyśle lotniczym stosowane są w postaci laminatów, taśm jednokierunkowych i prepregów tkaninowych. PPS, PEEK, PEKK i PEI są głównymi żywicami termoplastycznymi stosowanymi w produkcji części kompozytowych, zarówno z włóknami szklanymi, jak i węglowymi lub aramidowymi.
Natomiast w przypadku żywic duroplastycznych coraz większe zainteresowanie skierowane jest na żywice typu snap-cure, które gwarantują bardzo szybki proces przetwarzania (utwardzanie w czasie pomiędzy 3-8 minut) niższe temperatury formowania (100-150 °C) oraz odporność temperaturową. Podobnie jak materiały termoplastyczne, duroplasty w przemyśle lotniczym stosowane są w postaci laminatów, taśm jednokierunkowych i prepregów tkaninowych.
Na rysunkach w artykule przedstawiłem obszary zastosowania termoplastów i duroplastów w samolotach pasażerskich.
Od połowy 2025 r. Ukraina rozwija DOT-Chain Defence – cyfrowy system zamówień obronnych, który działa…
Rok 2025 był dla Polskiego Klastra Technologii Kompozytowych czasem intensywnej pracy i realnych efektów. Wspólnie…
Ukraina w latach 2022–2025 zbudowała jeden z najszybciej rosnących ekosystemów dronowych na świecie. Dla producentów…
Współczesne pole bitwy stało się poligonem bezwzględnej wojny elektronicznej (EW). Szacuje się, że zaawansowane systemy…
Od marca 2022 roku oczy całego świata zwrócone są na Ukrainę, która w warunkach wojennych…
Kolejnym filarem wizyty było forum Carbon Composites Tech Bridge (탄소복합재 테크브리지 국제포럼) w Jeonju (24 listopada), którego…